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Outline 

•  General ideas about supervised learning 
–  (Not specific to biological domain) 
–  Training, generalization, overfitting 
–  1 theoretical slide 

•  Cancer classification, gene signatures 
–  Nevins paper (“Oncogenic pathways…”) as a 

concrete example 
•  SVMs in enough detail for the lab 



Outline 

•  General ideas about supervised learning 
–  (Not specific to biological domain) 
–  Training, generalization, overfitting 
–  1 theoretical slide 

•  Cancer classification, gene signatures 
–  Preview: Nevins paper (“Oncogenic pathways…”) 

as a concrete example 
•  SVMs in some detail 



What is machine learning? 

•  “Statistics with more than 20 variables” 
•  “Intersection of computer science and 

statistics” 
•  Provisional definition:  [R. Schapire]   

–  Machine learning studies how to automatically 
learn to make predictions based on past 
observations 



Classification problems 

•  Classification: 
–  Learn to classify examples into a given set of 

categories (“classes”) 
–  Example of supervised learning (“labeled” training 

examples, i.e. known class labels) 
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ML vs. “Traditional Statistics” 

•  L. Breiman: “The two cultures”, Statistical 
Science, 2001 

•  “Data modeling culture” (Generative models) 
– Assume probabilistic model of known form, 

not too many parameters (<50) 
– Fit model to data 
–  Interpret model and parameters, make 

predictions after 



ML vs “Traditional Statistics” 

•  “Algorithmic modeling culture” (Predictive 
models) 
–  Learn a prediction function from inputs to outputs, 

possibly many parameters (e.g. 102 - 106) 
–  Design algorithm to find good prediction function 
–  Primary goal: accurate predictions on new data, 

i.e. avoid overfitting, good generalization 
–  Interpret after, finding “truth” is not central goal 

(but some “truth” in accurate prediction rule?) 
•  “Never solve a more difficult problem than 

you need to”  [V. Vapnik] 



Example: Generative model 
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Example: Prediction function 
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Poorly behaved training data 
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Conditions for accurate learning 

•  Example: predict “good” vs. “bad”   [R. Schapire] 



An example classifier 

•  Decision tree 



Another possible classifier 

•  Perfectly classifies training data, makes 
mistakes on test set  

•  Intuitively too complex 



Yet another classifier 

•  Fails to fit from training data 
•  Overly simple 



Complexity vs. accuracy 

•  Classifiers must be            
expressive enough to                        
capture “true” patterns        
in training data… 

•  …but if too complex, can overfit (learn noise or 
spurious patterns) 

•  Problem: Can’t tell best classifier from training error 
•  Controlling overfitting is central problem of ML 



Conditions for accurate learning 

•  To learn an accurate classifier, need 
–  Enough training examples 
–  Good performance on training set 
–  Control over “complexity” (Occam’s razor) 

•  Measure complexity by:   
–  Minimum description length (number of bits 

needed to encode rule) 
–  Number of parameters 
–  VC dimension  



Some theory 

•  Can prove:   [Vapnik-Chervonenkis] 

(generalization error) ≤ (training error) + 

with high probability, where: 
–  d = VC dimension, depends on class of prediction 

functions considered 
–  m = # training examples 
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Cancer classification 

•  Training data: expression data from 
different tumor types; few examples, 
high dimensional feature space 

•  Goals: 
–  (Accurately predict tumor type) 
– Learn gene signature = smaller set of 

whose expression pattern discriminates 
between classes 

•  “Feature selection” problem 



Oncogenic pathways 

•  [Nevins lab, Nature 2006] 
•  Training data:  

–  Human cell cultures where specific oncogenic 
pathway has been activated vs. control cells (Myc, 
Ras, E2F3, etc) 

•  Prediction scores ↔ probability/confidence 
that pathway is activated in sample 

•  Test data: 
–  Mouse models for pathways 
–  Human cancer cell lines 



Pathway signatures 



Prediction in mouse models 

•  Rank tumors from mouse models using 
trained pathway vs control classifiers 



Prediction scores as features 

•  Oncogenic pathway prediction scores 
used to represent tumors for clustering 



Support vector machines 

•  SVMs are a family of algorithms for learning a 
linear classification rule from labeled training 
data 
  {(x1, y1), … , (xm, ym)}, yi = 1 or -1 

•  Well-motivated by learning theory 
•  Various properties of the SVM solution help 

avoid overfitting, even in very high 
dimensional feature spaces 



Vector space preliminaries 

•  Inner product of two 
vectors: 

  <w,x> = Σg wg xg 
•  Hyperplane with 

normal vector w and 
bias b: 

  <w,x> + b = 0 
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Linear classification rules 
•  SVMs consider only 

linear classifiers:   
  fw,b(x) = 〈w, x〉 + b 

•  Leads to linear prediction 
rules: 

    hw,b(x) = sign(fw,b(x)) 
•  Decision boundary is a 

hyperplane 
•  Prediction score fw,b(x) 

interpreted as 
“confidence” in prediction 
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•  Assume linearly    
 separable training     
 data 

•  Margin of example =    
 distance to separating   
 hyperplane 

•  Margin of training set = min margin of 
examples 

•  Choose (unique) hyperplane that 
maximizes the margin 

•  Prediction score for test example  f(x) ~ 
signed distance of x to hyperplane 

Support vector machines 

•  test 



Geometric margin 

•  Consider training data S 
and a particular linear 
classifier fw,b  

•  If ||w|| = 1, then the 
geometric margin of training 
data for fw,b is  

   γS = MinS yi (〈w, xi〉 + b) 
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Maximal margin classifier 

•  Hard margin SVM: 
given training data S, 
find linear classifier fw,b 
with maximal geometric 
margin γS  

•  Solve optimization 
problem to find w and b 
that give maximal 
margin solution 
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Hard margin SVMs 

•  Equivalently, enforce a 
functional margin ≥ 1 for 
every training vector, and 
minimize ||w|| 

•  Primal problem: 
 Minimize  
  ½ <w,w> 
 subject to 
  yi (<w,xi> + b) ≥ 1  
 for all training vectors xi 
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Non-separable case 

•  If training data is not linearly separable, 
can: 
– Penalize each example by the amount it 

violates the margin (“soft margin SVM”) 
– Map examples to a higher dimensional 

space where data is separable 
– Combination of above 2 solutions 



Soft margin SVMs 

•  Introduce slack 
variable ξi to 
represent margin 
violation for training 
vector xi 

•  Now constraint 
becomes: 
 yi(<w,xi>+b) ≥ 1- ξi  
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Soft margin SVMs 

•  Primal optimization problem becomes: 
 Minimize 
  ½ <w,w> + C Σi ξi    (“1-norm”) ← LIBSVM 
 or 
  ½ <w,w> + C Σi ξi

2  (“2-norm”) 
 subject to 
   yi(<w,xi>+b) ≥ 1- ξi , ξi ≥ 0 

•  C: “trade-off” parameter 



VC dim viewpoint 

•  Let γ = margin, R = radius enclosing training 
examples (hard margin case) 

•  Can show 
  VC dimension ≤  
 therefore: 

–  Larger margin means lower “complexity” 
–  Independent of # dimensions! 

•  By contrast, for unconstrained hyperplanes in 
n-dimensional vector space: 
  VC dimension = n + 1 
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Regularization viewpoint 

•  Trade-off optimization problem (1-norm soft 
margin): minimize   
   
   ||w||2 + C Σi (1 - yi fw,b(xi))+ 

–  (1 - y f(x))+:  “hinge loss”, penalty for margin 
violation 

–  ||w||2:  “regularization term”; intuitively, prevents 
overfitting by constraining w     



Properties of SVM solution 

•  Introduce dual variable (“weight”) αi for each 
constraint, i.e. for each training example 

•  Solve dual optimization problem to find αi  
–  Convex quadratic problem → unique solution, 

good algorithms 
•  w = Σi αi yi xi 

–  Normal vector is linear combination of support 
vectors, i.e. training vectors with αi >0 



Support vectors 
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•  If xi has margin > 1, 
αi = 0  

1-norm SVM: two 
kinds of support 
vectors 

•  If xi has margin = 1, 
0 < αi < C 

•  If xi has margin < 1, 
αi = C 



Feature selection 

•  How to extract a “cancer signature”? 
•  Simplest feature selection: filter on 

training data 
– E.g. Apply t-test or Fisher’s criterion to find 

genes that discriminate between classes 
– Train SVM on reduced feature set 

•  Usually better to use results of training 
to select features 



Ranking features 

•  Normal vector w = Σi αi yi xi gives direction in 
which prediction scores change 

•  Rank features by |wg| to get most significant 
components 

•  Recursive feature elimination (RFE): 
iteratively 
–  Throw out bottom half of genes ranked by |wg|  
–  Retrain SVM on remaining genes 

 Induces ranking on all genes 



Kernel trick 
•  Idea: map to higher dimensional feature space 
•  Only need kernel values: K(x1,x2) = Φ(x1) • Φ(x2) to 

solve dual optimization problem 
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Examples of kernels 
•  Large margin non-linear decision boundaries 
•  Not needed with expression data 

Degree 2 polynomial Radial basis
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Issues explored in lab 

•  How well-defined is a cancer signature? 
– How stable is feature selection on small 

data set? 
– Empirical validation gene set, number of 

genes? 
•  Which analyses are purely training data 

results, which show prediction 
performance? 



Discussion issues for paper 

•  How well-defined is a cancer signature? 
– How stable is feature selection on small 

data set? 
– Empirical validation of gene set, number of 

genes? 
•  Which analyses are purely training data 

results, which show prediction 
performance? 


