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Outline

« General ideas about supervised learning
— (Not specific to biological domain)
— Training, generalization, overfitting
— 1 theoretical slide

» Cancer classification, gene signatures

— Nevins paper (“Oncogenic pathways...”) as a
concrete example

« SVMs in enough detall for the lab



Outline

« General ideas about supervised learning
— (Not specific to biological domain)
— Training, generalization, overfitting
— 1 theoretical slide

» Cancer classification, gene signatures

— Preview: Nevins paper (“Oncogenic pathways...”)
as a concrete example

« SVMs in some detaill



What is machine learning?

« “Statistics with more than 20 variables”

* “Intersection of computer science and
statistics”

* Provisional definition: [R. Schapire]

— Machine learning studies how to automatically
learn to make predictions based on past
observations



Classification problems

* Classification:

— Learn to classify examples into a given set of
categories (“classes”)

— Example of supervised learning (“labeled” training
examples, i.e. known class labels)
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ML vs. “Traditional Statistics”

L. Breiman: “The two cultures”, Statistical
Science, 2001

« “Data modeling culture” (Generative models)

— Assume probabilistic model of known form,
not too many parameters (<50)

— Fit model to data

— Interpret model and parameters, make
predictions after



ML vs “Traditional Statistics”

“Algorithmic modeling culture” (Predictive
models)

— Learn a prediction function from inputs to outputs,
possibly many parameters (e.g. 102 - 109)

— Design algorithm to find good prediction function

— Primary goal: accurate predictions on new data,
l.e. avoid overfitting, good generalization

— Interpret after, finding “truth” is not central goal

(but some “truth” in accurate prediction rule?)
“Never solve a more difficult problem than
you need to” [V. Vapnik]



Probability

Example: Generative model
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Example: Prediction function
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Poorly behaved training data
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Conditions for accurate learning

« Example: predict “good” vs. “bad” [R. Schapire]

sex mask cape tie ears smokes| class
training data

batman male vyes vyes no yes no [Good

robin male vyes vyes no no no |Good

alfred male no no yes no no |Good

penguin male no no yes no yes [ Bad

catwoman |female yes no no yes  no Bad

joker male no no no no no Bad

test data
batgirl female yes vyes no yes no 2?
riddler male yes no no no no 2?




An example classifier
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Another possible classifier

* Perfectly classifies training data, makes
mistakes on test set

* Intuitively too complex
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Yet another classifier

 Fails to fit from training data
* Overly simple ¢

S€X

n’la/le-/ female

200d bad




Complexity vs. accuracy

Classifiers must be
expressive enough to
capture “true” patterns
In training data...
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...but if too complex, can overfit (learn noise or

spurious patterns)

Problem: Can't tell best classifier from training error
Controlling overfitting is central problem of ML
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Conditions for accurate learning

« To learn an accurate classifier, need
— Enough training examples
— Good performance on training set
— Control over “complexity” (Occam’s razor)

* Measure complexity by:

— Minimum description length (number of bits
needed to encode rule)

— Number of parameters
— VC dimension



Some theory

« Can prove: [Vapnik-Chervonenkis]

(generalization error) < (training error) + @( (i)
m

with high probability, where:

— d = VC dimension, depends on class of prediction
functions considered

— m = # training examples



Cancer classification

* Training data: expression data from
different tumor types; few examples,
high dimensional feature space

* Goals:

— (Accurately predict tumor type)

— Learn gene signature = smaller set of

whose expression pattern discriminates
between classes

* “Feature selection” problem



Oncogenic pathways

[Nevins lab, Nature 2006]

Training data:

— Human cell cultures where specific oncogenic
pathway has been activated vs. control cells (Myc,
Ras, E2F3, etc)

Prediction scores <= probability/confidence
that pathway is activated in sample

Test data:
— Mouse models for pathways
— Human cancer cell lines



Pathway signatures

Control Myc Control Ras Control E2F3
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* Rank tumors from mouse models using

trained pathway vs control classifiers
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Prediction scores as features

* Oncogenic pathway prediction scores
used to represent tumors for clustering




Support vector machines

 SVMs are a family of algorithms for learning a
linear classification rule from labeled training
data

{(X1, y1)’ RN (xm’ ym)}’ Yi = 1 or -1

* Well-motivated by learning theory

« Various properties of the SVM solution help
avoid overfitting, even in very high
dimensional feature spaces



Vector space preliminaries

* Inner product of two +
vectors:

<W,X> = 3 W, X, + , +
+
* Hyperplane with /W
normal vector w and \\
bias b: ANE
<w.x>+ Db =0 . <w,x>+b=0




Linear classification rules

SVMs consider only

linear classifiers: +
fup(X) = (W, X) + b <w, x> + b >0
Leads to linear prediction  + , t
rules: W
Ny p(X) = sign(fy, ,(x)) \\\
Decision boundary is a / SR
hyperplane

Prediction score f,, ,(X) <wW,x>+Db <0 -

Interpreted as
“confidence” in prediction



Support vector machlnes

Assume linearly
separable training
data

Margin of example =
distance to separating .
hyperplane

Margin of training set = min ma_gln of
examples

Choose (unique) hyperplane that
maximizes the margin

Prediction score for test example f(x) ~
sighed distance of x to hyperplane
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Geometric margin

« Consider training data S
and a particular linear
classifier f,,, N

« If ||w|| =1, then the

of training

data for f,, , is
Ys = Ming y; ((w, x;) + b)




Maximal margin classifier

» Hard margin SVM: . N
given training data S,
find linear classifier f,, ,
with maximal geometric
margin ys

« Solve optimization
problem to find w and b
that give maximal
margin solution




Hard margin SVMs

« Equivalently, enforce a . N
functional margin = 1 for
every training vector, and

minimize ||wl]
* Primal problem:
Minimize
V2 <w,w>
subject to
Y. (W, x> + b) = 1 - .
for all training vectors x o




Non-separable case

* |f training data is not linearly separable,
can:

— Penalize each example by the amount it
violates the margin (“soft margin SVM”)

— Map examples to a higher dimensional
space where data is separable

— Combination of above 2 solutions



Soft margin SVMs

* |Introduce slack
variable g, to NE
represent margin )
violation for training =
vector X

* Now constraint
becomes: o

yi(<w,X>+b) = 1- g - -




Soft margin SVMs

* Primal optimization problem becomes:
Minimize
a<w,w>+ C X & < LIBSVM
or
V2 <w,w> + C 3, g2
subject to
yi(<w,x>+b) = 1-§;, § = 0

« C: “trade-off” parameter



VC dim viewpoint

* Lety =margin, R = radius enclosing training
examples (hard margin case)

« Can show P 2
VC dimension < (_)
therefore: )

— Larger margin means lower “complexity”
— Independent of # dimensions!

« By contrast, for unconstrained hyperplanes in
n-dimensional vector space:

VC dimension =n + 1



Regularization viewpoint

 Trade-off optimization problem (1-norm soft
margin): minimize

|wl|2 + C Z; (1 -y; T, 5(x)):

— (1-yf(x)),: “hinge loss”, penalty for margin
violation

— ||w|[%:  “regularization term”; intuitively, prevents
overfitting by constraining w



Properties of SVM solution

* Introduce dual variable ("weight”) o, for each
constraint, i.e. for each training example

» Solve dual optimization problem to find o,

— Convex quadratic problem — unique solution,
good algorithms

* W =2 04X
— Normal vector is linear combination of support
vectors, i.e. training vectors with o, >0



Support vectors

* If x. has margin > 1,
;=0

1-norm SVM: two
kinds of support
vectors

* If x; has margin = 1,
O0<ao,<C

 If x, has margin <1,
a,=C -




Feature selection

 How to extract a “cancer signature™?

« Simplest feature selection: filter on
training data

— E.g. Apply t-test or Fisher's criterion to find
genes that discriminate between classes

— Train SVM on reduced feature set

» Usually better to use results of training
to select features



Ranking features

* Normal vector w = X o, y, X; gives direction in
which prediction scores change

* Rank features by |w,| to get most significant
components

* Recursive feature elimination (RFE):
iteratively
— Throw out bottom half of genes ranked by |w
— Retrain SVM on remaining genes

Induces ranking on all genes

gl



Kernel trick

 |dea: map to higher dimensional feature space

* Only need kernel values: K(x,,x,) = ®(x,) * ®(x,) to
solve dual optimization problem

“Input Space” — “Fe_ature_ Space”



Examples of kernels

« Large margin non-linear decision boundaries
* Not needed with expression data




Issues explored in lab

 How well-defined is a cancer signature?

— How stable is feature selection on small
data set?

— Empirical validation gene set, number of
genes?
* Which analyses are purely training data
results, which show prediction
performance?



Discussion issues for paper

 How well-defined is a cancer signature?

— How stable is feature selection on small
data set?

— Empirical validation of gene set, number of
genes?
* Which analyses are purely training data
results, which show prediction
performance?



